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We study the electron-electron interaction contribution to the conductivity of two-dimensional In0.2Ga0.8As
electron systems in the diffusion regime over the wide conductivity range, ���1–150�G0, where G0

=e2 /�h. We show that the data are well described within the framework of the one-loop approximation of the
renormalization-group �RG� theory when the conductivity is relatively high, ��15G0. At lower conductivity,
the experimental results are found to be in drastic disagreement with the predictions of this theory. The theory
predicts much stronger renormalization of the Landau’s Fermi-liquid amplitude, which controls the interaction
in the triplet channel, than that observed experimentally. A further contradiction is that the experimental value
of the interaction contribution does not practically depend on the magnetic field, whereas the RG theory
forecasts its strong decrease due to decreasing diagonal component of the conductivity tensor in the growing
magnetic field.
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I. INTRODUCTION

A contribution of electron-electron �e-e� interaction to the
conductivity is studied since 1980.1,2 At high value of the
Drude conductivity, �0=�kFlG0�G0, where kF is Fermi
quasimomentum, l is the mean-free path, and G0=e2 /�h,
and in the diffusion regime, T��1, where � is transport re-
laxation time, this contribution is,

��ee = KeeG0 ln�T�� ,

Kee = 1 + 3�1 −
1 + �2

�2
ln�1 + �2�� , �1�

where �2 stands for the Landau’s Fermi-liquid amplitude.
The coefficient Kee has two terms coming from singlet and
triplet channels �the first and second terms in Eq. �1�, respec-
tively�. They are opposite in sign favoring localization and
antilocalization, respectively. In conventional conductors the
�2 value is small and the net effect is in favor of localization.
Together with the weak localization �WL� it leads to dielec-
tric behavior of the conductivity, �, d� /dT	0. However, the
analysis of the e-e interaction contribution performed in the
framework of the theory of the renormalization group �RG�
�Refs. 3–8� shows that the reduction in the temperature
and/or conductivity should lead to renormalization of the
Fermi-liquid amplitude �2. At �0
 �5–15�G0 or in dilute
systems this amplitude may be significantly enhanced due to
e-e correlations that can result in a metalliclike T dependence
of the conductivity, d� /dT�0. The theoretical study within
the one-loop approximation for arbitrary valley degeneracy
nv was carried out in Refs. 7 and 8. The role of two-loop
diagrams was studied for two cases only. The first case re-
lates to multivalley systems �nv�1� with �2�1.8 The sec-
ond one is single-valley system �nv=1� with large �2 value.9

The RG theory has been used with advantage for understand-
ing of the temperature dependence of the conductivity and
metal-insulator transition in Si-metal-oxide-semiconductor

field-effect transistors.7,10–12 As far as we know there are no
experimental study to examine the region of validity of this
theory for the simplest two-dimensional �2D� systems with
the single-valley isotropic spectrum in the deeply diffusion
regime for which the RG equations were derived.

Besides, the analysis of the temperature dependence of
the conductivity at B=0 alone is not the reliable way to
understand the role of the renormalization of e-e interaction
and range of validity of the one-loop approximation. It is
because there are lots of effects, such as the weak localiza-
tion and antilocalization, the ballistic contribution of the e-e
interaction, the temperature-dependent screening, the
temperature-dependent disorder, and so on, which govern the
temperature dependence of the conductivity along with the
e-e interaction. Certain of these effects are poorly controlled.
Experimentally, it manifests itself as that the values of the
interaction contribution to the conductivity found from the
temperature dependence of conductivity at B=0 and at B
�0 are significantly different even in the case of high
conductivity.13

From our point of view the reliable results can be ob-
tained only from simultaneous analysis of the data obtained
at B=0 and at low and high magnetic fields. The unique
property of the e-e interaction in the diffusion regime is the
fact that it contributes to the diagonal component of the con-
ductivity tensor, �xx, only. Just this feature gives a possibility
to obtain experimentally the e-e interaction contribution to
the conductivity even for the low conductivity when the in-
terference contribution dominates.14,15 Following this line of
attack and analyzing the experimental results obtained for
the 2D electron gas in the GaAs / In0.2Ga0.8As /GaAs single-
quantum well, the authors of Ref. 14 come to the conclusion
that the temperature dependence of the e-e interaction con-
tribution remains logarithmical over the wide conductivity
range, �0��1. . .100�G0: ��ee�KeeG0 ln�T��. However, the
coefficient Kee is found dependent on the disorder strength.
Its value drastically decreases when �0 decreases, starting
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from �0��12–15�G0. Although this effect is prominent, it
was not since discussed and its origin remains unclear.

In this paper we report the results of the detailed study of
the conductivity of 2D electron gas in In0.2Ga0.8As and GaAs
single-quantum well at B=0 and B�0 over the wide con-
ductivity range. We begin by considering the predictions of
the RG theory. Then, after description of experimental de-
tails, we will outline the procedure used for extracting the
diffusion part of the interaction correction. Finally, analyzing
the temperature dependences of the interaction contribution
and the conductivity we will show that the one-loop approxi-
mation adequately describes the data while ��15G0 and
strongly disagrees with that at lower conductivity. The con-
flict between the experiment and RG theory arising in the
presence of the magnetic field will be discussed as well.

II. PREDICTIONS OF THE RG THEORY

Before considering and discussing the experimental re-
sults let us demonstrate the role of the �2 renormalization.

The temperature dependence of � and �2 is described in
the framework of one-loop approximation of RG theory by
the following system of the differential equations,3–8

d�

d�
= − �1 + 1 + 3�1 −

1 + �2

�2
ln�1 + �2��	 , �2�

d�2

d�
=

1

�

�1 + �2�2

2
, �3�

where �=−ln�T�� and � is measured in units of G0. The
quantity �2 is expressed through the Fermi-liquid constant
F0

�, �2=−F0
� / �1+F0

��. For the high conductivity, the value of
F0

� depends on the gas parameters rs=
2 / �aBkF�, where aB is
the effective Bohr radius, and for small rs values is16

F0
� = −

1

2�

rs


2 − rs
2
ln�
2 + 
2 − rs

2


2 − 
2 − rs
2�, rs

2 � 2. �4�

The term 1+1 in braces in Eq. �2� is responsible for the weak
localization and the interaction in singlet channel, which in
the case of Coulomb interaction give equal contributions.
Equation �3� describes the renormalization of the Landau’s
Fermi-liquid amplitude �2 with the temperature and conduc-
tivity. One can see from Eq. �3� that the �2 renormalization
can be neglected at high conductivity. In this case the inte-
gration of Eq. �2� gives

��T� = �1 + Kee�G0 ln�T�� + const �5�

with Kee given by Eq. �1�. This expression accords well with
the known expression

��T� = �0 + KeeG0 ln�T�� + G0 ln� �

��T�� , �6�

where ��T��1 /T is the phase relaxation time controlled in
2D systems by the inelasticity of the e-e interaction. How-
ever, Eqs. �2� and �3� predict that the change in the amplitude
�2 and, hence, the deviation of the temperature dependence
of the conductivity from the logarithmic one is appreciable

already at moderate conductivity value. The written is illus-
trated by Fig. 1, in which the results of numerical solution of
Eqs. �2� and �3� are presented. We used the parameters,
which are typical for the moderately disordered
GaAs / In0.2Ga0.8As /GaAs heterostructures investigated in
this paper. The minimal T� value corresponds to T=0.1 K
for all the cases. The following initial conditions have been
used. We suppose that the high-temperature conductivity is
equal to the Drude conductivity, ���=0�=�0. This condition
seems to be natural. It corresponds to that the diffusion part
of interaction correction is equal to zero and the WL correc-
tion is much less than the Drude conductivity at T�=1. The
second condition is �2��=0��2

0=−F0
� / �1+F0

��, where F0
� is

determined by Eq. �4�.
One can see from Fig. 1�c� that the renormalization of �2

for the high Drude conductivity, �0=50G0, is rather small so
that the temperature dependence of the conductivity is close
to the logarithmic one with the slope determined by the ini-
tial value of �2, ���T�= �1+Kee��2

0��G0 ln T�=1.59G0 ln T�
�Fig. 1�a��. Nevertheless, the noticeable decrease in the Kee
value with the lowering temperature is evident even for so
high conductivity �see Fig. 1�d��. The Kee value at T�=3.5
�10−3 is approximately equal to 0.46 while Kee at T�=1 is
close to 0.6.

For the lower Drude conductivity, �0=15G0, the renor-
malization of �2 with the temperature decrease becomes sig-
nificant �Fig. 1�c��. The sign of d��ee /dT is changed at T�
�0.012 from positive at high temperature to negative at
lower one �Fig. 1�b��. However, the temperature dependence
of the overall conductivity remains insulating �d� /dT	0�
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FIG. 1. �Color online� �a� The temperature dependences of the
conductivity change ��=��T��−��T�=1�, �b� the e-e interaction
contribution to the conductivity, �c� the Fermi-liquid amplitude �2,
and �d� Kee found from the solution of Eqs. �2� and �3�. The dashed
line in panel �a� is the dependence 1.59G0 ln�T��. The following
parameters have been used, n=2.0�1011, 2.5�1011, and 5.0
�1011 cm−2 and �2

0=0.383, 0.367, and 0.3 for �0=10G0, 15G0,
and 50G0, respectively.
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due to dominating WL contribution. Finally, for �0=10G0,
the renormalization of �2 is so huge �Fig. 1�c�� that the me-
tallic behavior of the interaction correction �Fig. 1�b�� wins
the insulating behavior of the WL correction at low tempera-
ture and, as consequence, the total conductivity behaves it-
self metallically at T�
5�10−3 �Fig. 1�a��. To the best of
our knowledge such the behavior was never experimentally
observed in the moderately disordered 2D systems of weakly
interacting electrons with the simple single-valley energy
spectrum, characterizing by rs�2–3 and ��1G0. The goal
of this paper is to examine how the one-loop approximation
describes the experimental data for such the systems and,
thus, establish the region of validity of this theory.

III. EXPERIMENT

The results of experimental study of the evolution of the
diffusion part of the interaction correction to the conductivity
in a n-type 2D system with decreasing Drude conductivity
within the range from �0�150G0 to �0�5G0 at the tem-
peratures when T��0.1–0.15 are reported. The ballistic
contribution of the e-e interaction is small under these con-
ditions. The data for two structures, 3510 and 4261, are ana-
lyzed. The structure 3510 with moderate disorder has two
�-doping layers disposed in the barriers on each side of the
quantum well on the distance of about 9 nm. The structure
4261 with higher disorder has the � layer in the center of the
quantum well. In more detail the structures design is de-
scribed in Refs. 17 and 18. The electron density n and mo-
bility � in the structures are as follows: n=7.0�1011 cm−2,
�=19300 cm2 /Vs for structure 3510 and n=1.8
�1012 cm−2, �=1600 cm2 /Vs for structure 4261. The
samples were mesa etched into standard Hall bars and then
an Al gate was deposited by thermal evaporation onto the
cap through a mask. Varying the gate voltage, we changed
the electron density in the quantum well and changed the
conductivity from its maximal value down to ��1G0.

First, let us demonstrate that the structures investigated
are “normal,” i.e., the transport in zero, low and high mag-
netic field at the high conductivity, when the renormalization
of the e-e interaction should be negligible, is consistent with
the following simple model. The temperature dependence of
the conductivity in the absence of magnetic field can be de-
scribed by Eq. �6�, whereas in the presence of the magnetic
field the conductivity tensor components are

�xx�B,T� =
en��B,T�

1 + ���B,T�B�2 + ��ee�T� , �7�

�xy�B,T� =
en��B,T�2B

1 + ���B,T�B�2 . �8�

Because the WL correction is actually reduced to the renor-
malization of the transport relaxation time,19 it is incorpo-
rated here into the mobility in such a way that

��WL�B,T� = en���B,T� , �9�

where

��WL�B = 0,T� = − G0 ln� �

��T�� , �10�

and ��WL�B�=��WL�B�−��WL�B=0� is described by the
expression20,21

��WL�B� = �G0H� �

�

,
B

Btr
� ,

H�x,y� = ��1

2
+

x

y
� − ��1

2
+

1

y
� − ln x . �11�

Here, Btr=� / �2el2� is the transport magnetic field, ��x� is a
digamma function, and � is the prefactor, whose value de-
pends on the conductivity if one takes into account two-loop-
localization correction and the interplay of the weak local-
ization and interaction, �=1–2G0 /�.22,23

For structure 3510, the low-field magnetoconductivity
1 /�xx�B�, which results from the suppression of the interfer-
ence quantum correction, measured at high conductivity for
different temperatures is presented in inset in Fig. 2�a�. One
can see that the data are well described by Eq. �11�. The
temperature dependence of � within the experimental accu-
racy is close to 1 /T �Fig. 2�a��. This shows that the main
mechanism of the phase relaxation is, as expected, inelastic-
ity of the e-e scattering. The prefactor value is close to unity.

To find the diffusion part of the interaction correction we
take approach which has been detailed in our previous paper,
Ref. 17. It uses the unique property of the diffusion correc-
tion to contribute to �xx and not to �xy �see Eqs. �7� and �8��.
Thus, in order to obtain the correction experimentally, one
should find such a contribution to the conductivity which
exists in �xx but is absent in �xy. The temperature depen-
dences of ��xx

ee=��xx
ee�T�−��xx

ee�1.35 K� found in such a way
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FIG. 2. �Color online� �a� The temperature dependences of the
phase relaxation time, �b� � and �0 found from experiment �see
text�, and �c� ��xx

ee taken at different magnetic field. Inset in panel
�a� shows the � vs B dependence for T=4.2, 3.0, 2.56, 2.0, 1.35 K
�from top to bottom�. The dashed lines are the results of the best fit
by Eq. �11� carried out at �B��0.3Btr �Btr=80 mT for this case�.
Solid lines in �b� and �c� are the solutions of the RG equations with
the initial conditions, ��T�=1�=29.8G0, �2

0=0.4. Structure 3510,
n=3.35�1011 cm−2.
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for the different magnetic fields are shown in Fig. 2�c�. One
can see that these dependences are logarithmic within the
experimental accuracy, ��xx

ee=KeeG0 ln�T /1.35 K� and Kee
�0.32 does not depend on the magnetic field. The tempera-
ture dependence of the conductivity at B=0 is shown in Fig.
2�b�. As seen it is also logarithmic, and, what is more impor-
tant, the slope of the � vs ln T dependence is close to the
value 1+Kee=1.32 predicted theoretically �see Eq. �5��. This
fact justifies that there are no additional mechanisms of the T
dependence of the conductivity in the samples investigated.
It is wholly determined by the temperature dependence of the
WL and interaction quantum corrections. Now, knowing the
experimental Kee and � values one can easily estimate the
value of the Drude conductivity with the use of Eq. �6�. As
seen from Fig. 2�b� the values of �0 found at different tem-
peratures are very close to each other. This attests that the
model is adequate and the value of �0 found in this way is a
good estimate for the Drude conductivity. Thus, �0
= �30.8�0.2�G0 for this case.

Let us compare the experimental temperature depen-
dences of conductivity with that predicted by the RG theory.
Solid line in Fig. 2�b� is the result of the numerical solution
of Eqs. �2� and �3� with the initial parameters which give the
best fit of the data, ��T�=1�=29.8G0 and �2

0=0.4. The varia-
tion in the e-e interaction contribution shown in Fig. 2�c� has
been obtained by subtraction of the WL contribution from
the calculated � vs T curve as follows: ��ee�T�=��T�
−��1.35 K�−ln�T /1.35 K�. Excellent agreement between
the data and solution of the RG equations is evident both for
��T� and ��xx

ee�T�.
It is worth noting that the values of ��T�=1� and �2

0 found
from the fit are reasonable. The initial value of �2, �2

0=0.42,
is close to that calculated from Eq. �4�, �2=0.37. The value
of � at T�=1 is less than the Drude conductivity estimated
experimentally by the value of about 1G0. The reason is that
not all the interference quantum correction is suppressed at
T�=1. Really, if one extrapolates the experimental � vs T
dependence to T=�−1�30 K we obtain for the rest of ��WL

at T�=1: ��WL�30 K��G0 ln�� /��30 K���−1.2G0. Thus,
the Drude conductivity estimated as ��30 K�
−��WL�30 K� is �0��29.8+1.2�G0=31G0. This value
practically coincides with that obtained above, �0
= �30.8�0.2�G0.

It would be fine to trace experimentally the �2 change
over the whole temperature range starting from T�=1. How-
ever, the ballistic contribution of the interaction correction,
the partial lifting of the degeneracy of the electron gas, fi-
nally, the phonon scattering controls the temperature depen-
dence of the conductivity at high temperature. All this makes
it impossible to determine the e-e interaction contribution
accurately already at T��0.1–0.15. On the other hand, Fig.
1 shows that the renormalization of �2 strongly depends on
the value of the Drude conductivity, it should be more pro-
nounced at lower Drude conductivity. Let us, therefore, con-
sider what happens with the lowering of the conductivity.

The analysis described above has been carried out over
the wide range of the gate voltage which controls the elec-
tron density, the mobility and, thus, the Drude conductivity.
All the dependences, namely, ��T� at B=0, ��T�, and �xx�T�
are similar to that shown in Fig. 2 down to ��1G0. How-

ever, agreement of the data with the solution of Eqs. �2� and
�3� is worse, the lower the conductivity.

Disagreement becomes noticeable already at �0�19G0. It
is more visible in ��xx

ee vs T dependence �see Fig. 3�. The
experimental dependence remains close to the logarithmic
one while the curve calculated with the initial value ��T�
=1�=�0+��WL�T�=1�=18.5G0 shows upturn at T
0.3 K.
The �2 value found from the slope of the experimental de-
pendence is approximately equal to 0.55, whereas the calcu-
lated value of �2 changes from �2=0.57 at T=4.2 K to �2
=0.8 at T=0.45 K. Variation in the initial conditions within
the reasonable range does not improve agreement. The de-
pendence calculated remains nonlogarithmic.

The distinction between the calculation and experimental
results becomes more clear at lower �0. As an example we
present the data for �0�9.6G0 in Fig. 4. It is seen from Fig.
4�b� that the temperature dependence of the conductivity re-
mains close to the logarithmic one. The temperature depen-
dence of ��xx

ee is also close to the logarithmic one with the
slope corresponding to �2=0.64–0.68.

As in the case of the higher conductivity, the temperature
dependence of � is close to 1 /T �Fig. 4�a�� therefore the
term responsible for the weak localization in Eq. �2� remains
equal to 1. However, it is impossible to describe the tempera-
ture dependence of the conductivity for B=0 if one uses
��T�=1� found from the experimental Drude conductivity as
in the previous case �Fig. 4�b��. One can suppose that the
value of ��T�=1� has been obtained with large error and
another value should be used as initial one. We tried to de-
scribe the data using both ��T�=1� and �2

0 as the fitting
parameters. As seen from Fig. 4�b� the much better agree-
ment can be achieved in this case. However, as clearly evi-
dent from Fig. 4�c�, even with these parameters the calcu-
lated dependence ��xx

ee�T� strongly deviates from the
experimental one. Namely, the upturn of ��xx

ee with the tem-
perature decrease predicted by the RG theory is not observed
experimentally.
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FIG. 3. �Color online� The temperature dependences of ��xx
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different magnetic fields for structure 3510 at �0=18.5G0 and n
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It could be assumed that the procedure of the extraction of
the e-e interaction contribution being transparent neverthe-
less fails. However, the RG theory predicts that not only the
e-e interaction contribution ��ee should demonstrate the up-
turn with the temperature decrease at the lower Drude con-
ductivity but the total conductivity � as well �see Fig. 1�a��.
In this case the experiment and RG theory can be compared
directly without any additional treatment of the data. There-
fore, let us inspect the results for the lower Drude conduc-
tivity, �0�6.8G0, presented in Fig. 5. The temperature de-
pendence of � found from the low-field negative
magnetoresistance deviates from the 1 /T law demonstrating
tendency to saturation at low temperature �see Fig. 5�a��. As

shown in Ref. 18 such the behavior results from the fact that
the dephasing length L=
D� �where D is the diffusion
coefficient� at low T becomes comparable with the localiza-
tion length �� l exp��kFl /2�, and the quantity �

� =1 / �1 /�

+D /�2�, rather than � is experimentally obtained from the
fit of the magnetoresistance. Indeed, the data in Fig. 5�a� are
well described by this formula with ��ps�=20 /T and �
=15l that is close to exp��kFl /2��30l. Since the � satura-
tion is not yet observed in our temperature range, the tem-
perature dependence of the conductivity remains close to the
logarithmic one �see open symbols in Fig. 5�b��. In contrast
to that, the RG equations predict the upturn of the conduc-
tivity within our temperature range independently of the ini-
tial � and �2 values, ��T�=1� and �2

0. As discussed above
the upturn results from the strong renormalization of �2 that
leads not only to the change in sign of d�ee /dT but to large
its value as well so that �d�ee /d ln T�	d�WL /d ln T. In the
actual case this results in that the calculated curve following
the data at the high temperature, T�1.5–6 K, exhibits, nev-
ertheless, minimum at T�1.2 K and growth at lower tem-
perature �solid curve in Fig. 5�b��.

It is clear that the one-loop approximation of the RG
theory is insufficient for so low conductivity, ��1G0. It is
pertinent to note here, that such decisive disagreement with
the RG theory for the structure 4261 with the stronger disor-
der is observed at the higher conductivity �Fig. 6�. As seen,
the experimental T dependence of � is close to the logarith-
mic one,24 whereas the RG equations predict the upturn in
the � vs T plot already at ��4.3G0.

Let us analyze the results in the whole. In Fig. 7 we com-
pare the low-temperature values of the Fermi-liquid ampli-
tude �2 obtained experimentally in wide range of the con-
ductivity values, �= �2–150�G0,25 with that predicted by the
RG theory. The �2 data obtained with the help of Eq. �1�
from the slope of the experimental ��xx

ee vs ln T dependence
within the temperature range from 1.3 to 4.2 K are shown by
circles. They agree well with the results obtained from the fit
of the ��xx

ee vs T data by the RG equations, Eqs. �2� and �3�
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�shown by solid triangles�. As shown above such the fit is
possible only at the relatively high conductivity, �0�18G0.
Note that the initial values of �2, �2

0, fall closely to the curve
calculated from Eq. �4�. One can see that �2 increases mono-
tonically when the conductivity goes down and this increase
is well described by the one-loop RG equations down to �
�15G0. At the lower conductivity, the theory predicts much
steeper rise of �2 than that obtained from the data treatment.

As mentioned in Sec. I the behavior of the e-e interaction
contribution with decreasing conductance was studied in
Ref. 14. It has been, in particular, found that the value of Kee
decreases with the �0 decrease. We have retreated those data
following the line of attack described above. The results for
�	15G0 are presented in Fig. 8. In this figure, the open
symbols are the low-temperature �2 value obtained from
��xx

ee vs T dependence. The value of �2
0 corresponding to the

best fit of the data by the RG equations are presented by
solid symbols. It is seen that while the low-temperature �2
points lie noticeably above the theoretical curve, Eq. �4�, the
�2

0 values fall very close to it for all the structures investi-
gated both in Ref. 14 and in this paper.

Thus, the RG equations well describe both the tempera-
ture dependence of the conductivity at B=0 and the tempera-
ture dependence of the interaction contribution at the rela-
tively high conductivity, ��15G0. The renormalization of
the interaction constant �2 at �=15G0 is large enough. For
instance, the amplitude �2 in the sample 3510 increases from
0.41 at T=50 K up to 0.61 at T=2.5 K. Such an increase
corresponds to the reduction in Kee by a factor of 2, from
0.46 at the higher temperature down to 0.23 at the lower one.
The renormalization of �2 becomes stronger at further con-
ductivity decrease. However, the experimental �2 vs � plot
saturates when �2 increases by about of two times in our
conductivity range, whereas the RG theory predicts much
stronger renormalization at ��10G0 �see Fig. 7�. One of the
possible reasons of the disagreement between the theory and
experiment at ��15G0 is the restriction of the one-loop ap-

proximation and the necessity of taking into account the next
terms in 1 /� expansion in RG equations.

It would seem that the understanding is achieved: the RG
theory adequately describes the data while the conductivity
is rather high. However, let us analyze the data in the pres-
ence of magnetic field in more detail. Equations �2� and �3�
have to describe �xx�T� if the Zeeman splitting is relatively
small, �g��BB�T. In the case of B	Btr, when the WL con-
tribution is suppressed, the one unity in braces in Eq. �2�
should be omitted. Because �xx strongly decreases with in-
creasing B, �xx�1 /B2, when B	1 /�, the strong change in
the interaction contribution due to the renormalization of �2
should be clearly evident also. As evident from Figs. 2�c�, 3,
4�c�, 5�c�, and 6�b�, the ��xx

ee vs T plots are practically inde-
pendent of the magnetic field. This contradiction is more
clearly illustrated by Fig. 9, where the results for structure
3510 at �0�30.8G0 are presented. As seen from Fig. 9�a�
�xx decreases drastically from �25G0 at B=0.5 T down to
�2G0 at B=5 T. However, the quantity ���xx

ee�T1�
−��xx

ee�4.2 K�� /G0 ln�T1 /4.2 K�, which is Kee according to
Eq. �1�, slightly increases against the background of the
Shubnikov-de Haas �SdH� oscillations �Fig. 9�b��, instead of
decreasing due to the renormalization of �2. It would be
assumed that the decrease expected is compensated by the
increase in �xx

ee caused by the suppression of two from three
triplet channels due to the Zeeman effect.4,6,15,26,27 However,
this effect should not be essential in our systems having g
�0.5.

To assure that the e-e interaction contribution does not
depend on the magnetic field in spite of strong �xx decrease,
we have performed analogous measurements on the structure
with the very small value of g factor. It is the
Al0.3Ga0.7As /GaAs /Al0.3Ga0.7As structure with the quantum
well width 8 nm. The electron density in the structure is n
=8�1011 cm−2. The value of g factor on the bottom of the
conduction band for this structure is about −0.15.28 At the
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�solid line� as a function of the conductivity at T=4.2 K for the
sample 3510. The dashed line is the � dependence of �2

0 calculated
with the help of Eq. �4�. Triangles correspond to the best fit of the
data by Eqs. �2� and �3�. Circles are obtained with the help of Eq.
�1� from the slope of the experimental ��xx

ee vs ln T dependence
within the temperature range from 1.3 to 4.2 K.
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MINKOV et al. PHYSICAL REVIEW B 79, 235335 �2009�

235335-6



Fermi energy, EF�25 meV, its value is still less due to non-
parabolicity of the conduction band, it can be estimated as
g�0�0.05. The results are presented in Fig. 10. It is seen
that even though �xx changes from 45G0 down to 5G0 in our
magnetic-field range �Fig. 10�a��, there is no monotone
change in the Kee value �Fig. 10�b��. Exhibiting the weak
SdH oscillations it remains constant. It should be pointed out
that the value of Kee changes drastically when the conductiv-
ity is lowered by means of the gate voltage and it falls from
Kee�0.4 at �=50G0 down to Kee�0.1 at �=5G0.

Thus, the interaction contribution to the conductivity at
B=0 decreases when the conductivity controlled by the gate
voltage goes down. This decrease is well described by the
RG equations while ��15G0. On the other hand, no de-
crease in the interaction contribution is evident when the
conductivity decreases being controlled by the external mag-
netic field. In this case the contribution remains constant
while �xx is lowered by 1 order of magnitude. Such the be-
havior remains puzzling.

IV. CONCLUSION

We have experimentally studied the evolution of the dif-
fusion part of the e-e interaction correction to the conductiv-
ity of 2D electron gas in GaAs / In0.2Ga0.8As /GaAs single-
quantum well within the conductivity range from �150G0
down to �1G0.

To separate out the interaction contribution to the conduc-
tivity we have used the fact that the e-e interaction contrib-
utes to the diagonal component of the conductivity tensor,
�xx, only. The simultaneous analysis of the weak-localization
magnetoresistance, the temperature dependence of �xx at B
�0 and � at B=0 allows us to determine the conductivity
dependence of the Landau’s Fermi-liquid amplitude �2. It
has been obtained that the low-temperature value of �2 in-
creases with conductivity lowering. Experimental data have
been compared with theoretical results obtained within the
framework of the RG theory. It has been shown that the
one-loop approximation adequately describes the data while
the conductivity is higher than �15G0. At lower conductiv-
ity, drastic disagreement between theory and experiment is
evident, suggesting the next-loop approximations in the RG
theory are needed. Finally, it remains unclear why the renor-
malization of the Fermi-liquid amplitude takes experimen-
tally place when the conductivity decreases with the gate
voltage but does not when it decreases in the external mag-
netic field. More work is required to resolve this issue.
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